POUR BOOSTER VOS PROJETS DE R&D

MICA, CRÉATEUR DE MATÉRIAUX INNOVANTS

Projet Plas'Ster

Stérilisation par plasma non-thermique de dispositifs médicaux dits fragiles

Plasma : 4ème état de la matière ; ionisation d'un gaz par un champ électrique ou électro-magnétique.

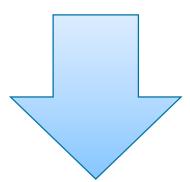
Un contexte / une problématique

Un concept scientifique Pour une solution adaptée

Chaleur humide (autoclave)

Radiation ionisante (gammagraphie)

Traitement chimique (oxyde éthylène)



Modification des propriétés physiques

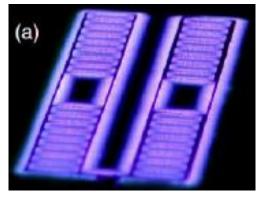
Toxicité

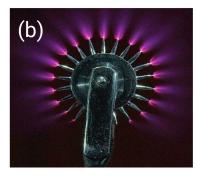
Stérilisation par plasma non-thermique de dispositifs médicaux

Pas toujours appropriés pour les matériaux ou biomatériaux (ex polyEtherEtherkKetone (PEEK))

Naissance du projet Plas'Ster CRITT-MDTS et BIOS

Un concept scientifique:


Collaboration académique CRITT-MDTS - URCA



Plasma = gaz ionisé

lons, électrons, UV photons, Espèces neutres Radicaux libres

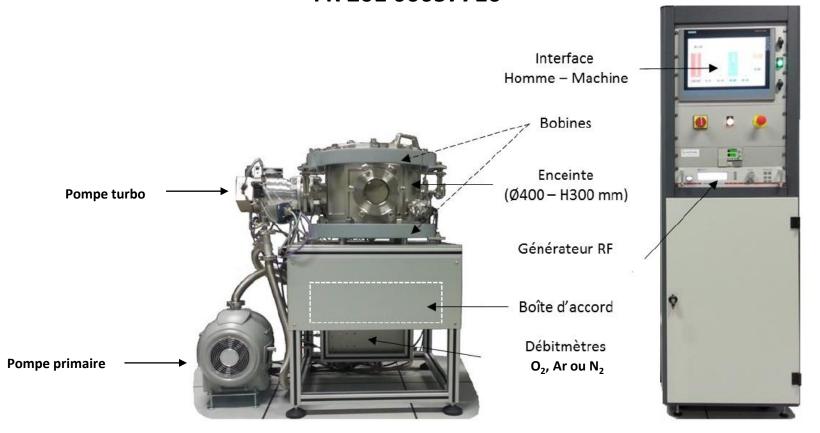
Barrière Diélectrique

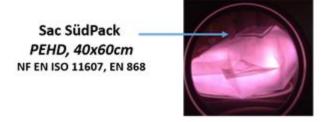
Décharge coronaire

Impossibilité de maintenir l'état stérile

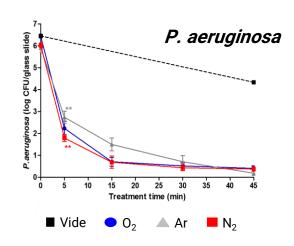
Jet Plasma

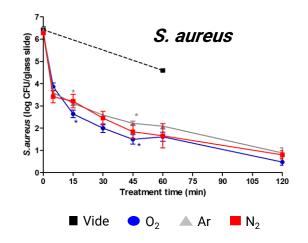
- *a) Plasma Processes and Polymers*, Volume 7, 2010, 244–249. b) https://www.comsol.com/blogs/corona-discharge
- c) Journal of Applied Biomedicine, Volume 8, Issue 2, 2010, 55-66
- d) http://www.accutome.com/3-5-x-5-25-steam-sterilization-pouches

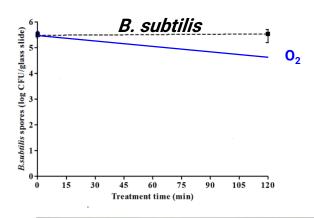




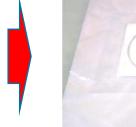
Dépôt d'un brevet FR 201 00057716

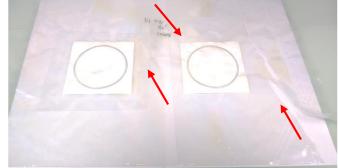






Détermination de l'efficacité bactéricide et sporicide des plasmas oxygène, azote et argon / **NF EN ISO 14937**


RF: 25 W; BO: 14G; Débit: 0,5 sccm



Augmentation de la RF ≥ 50W du débit à 1 sccm

le polyéthylène basse densité (PEBD) ; CH2 = CH2

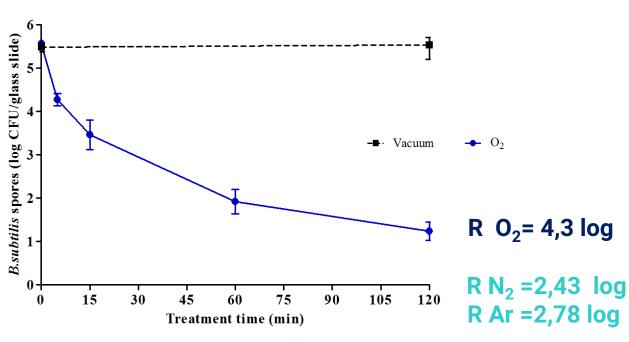
- **❖** Spectrométrie à photoélectrons X **→** Analyse en extrême surface

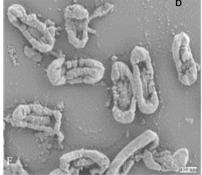
Détermination des paramètres enceintes optimaux en fonction des gaz sans altération du sac de stérilisation

O₂: RF 100 W pour un temps de traitement en continu de 120 min et 1 débit de 1 sccm

Ar : RF 75 W pour un temps de traitement en continu de 120 min et 1 débit de 1 sccm

N₂: RF 25 W pour un temps de traitement en continu de 120 min et 1 débit de 1 sccm

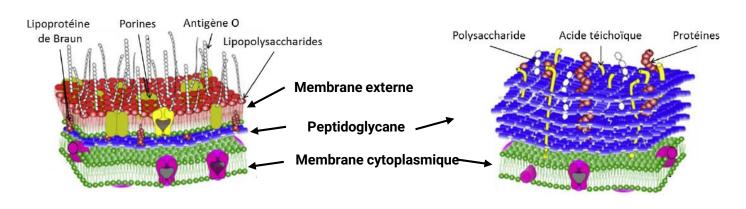


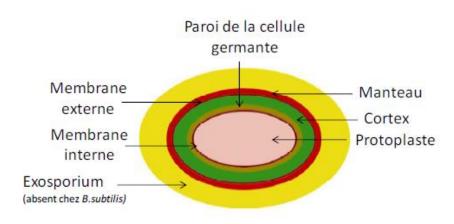


Détermination de l'efficacité sporicide des plasmas oxygène, azote et argon / NF EN ISO 14937

RF: 100 W; BO: 14G; Débit O₂: 1 sccm

MEB: Efficacité d'un plasma oxygène sur B. subtilis. a) Témoin ; b) Traitement de 120 min. Paramètres du prototype : Gaz : 02; Débit : 1 sccm; RF: 100W, BO: 14 G





Bactérie Gram -

Bactérie Gram +

Spore

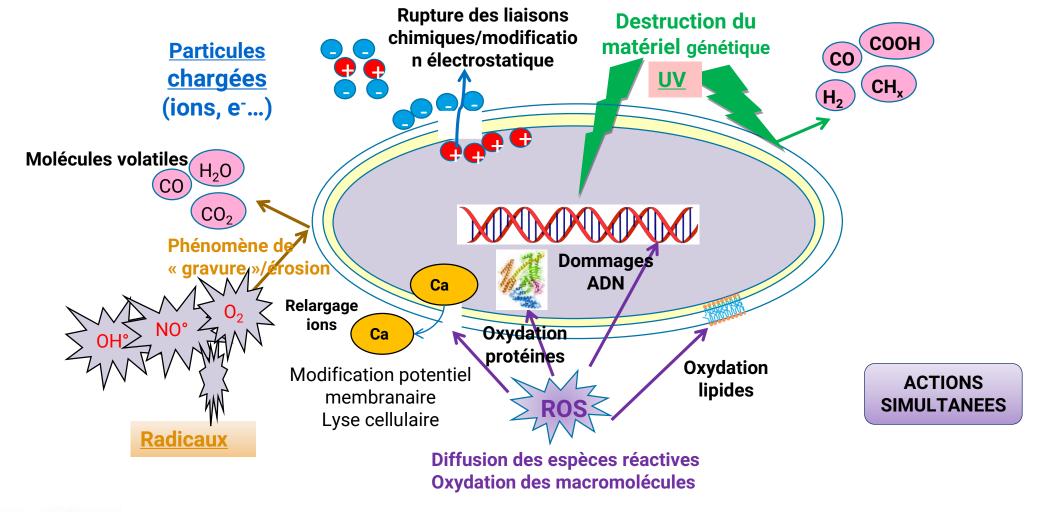
Peptidoglycane: 2,41 + 0,54 nm *P. aeruginosa* 33,8 +5,4 nm *S. aureus*

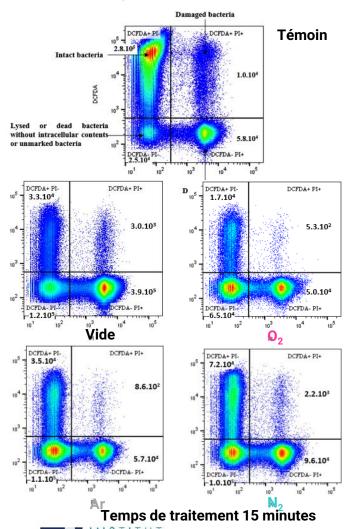
Cortex et paroi : peptidoglycanes

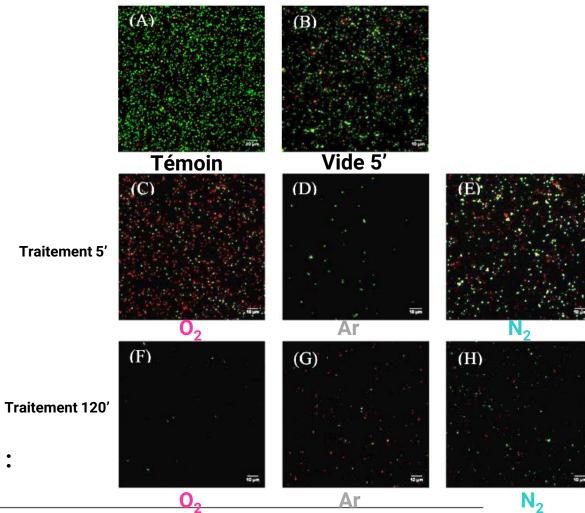
Tripathi, P. et al. Towards a nanoscale view of lactic acid bacteria. Micron 43, 1323–1330 (2012).

Vollmer, W. & Seligman, S. J. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 18, 59–66 (2010).

Eichenberger, P. (2007). Genomics and cellular biology of endospore formation. In Bacillus: Cellular and molecular biology. P. Graumann. Wymondham, UK, Caister Academic Press: 319-350.





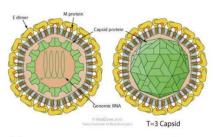


Plasmas / S. aureus viables non cultivables (VBNC)

Cytométrie en flux

Microscopie Confocale

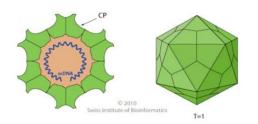
IP et DCFDA


Texcell

Détermination de l'efficacité virucide des plasmas oxygène / NF EN ISO 14937

BVDV

famille Pestivirus, genre flaviviridae


Virus enveloppé (lipides) Diamètre : 50 nm

PPV

Porcine Parvovirus; famille: Parvoviridae

Virus non enveloppé Diamètre : 18 - 26 nm

education.exposg.org/images/Flaviviridae_virion.png

BVDV		PPV	
Témoins (log)	Réduction (log)	Témoins (log)	Réduction (log)
A) 5,86	0,46	A) 6,16	~ 0
B) 6,08	0,67	B) 6,36	~ 0

Vide 120'

Détermination de l'efficacité virucide des plasmas / NF EN ISO 14937

Toycol	
Texcel	•

02

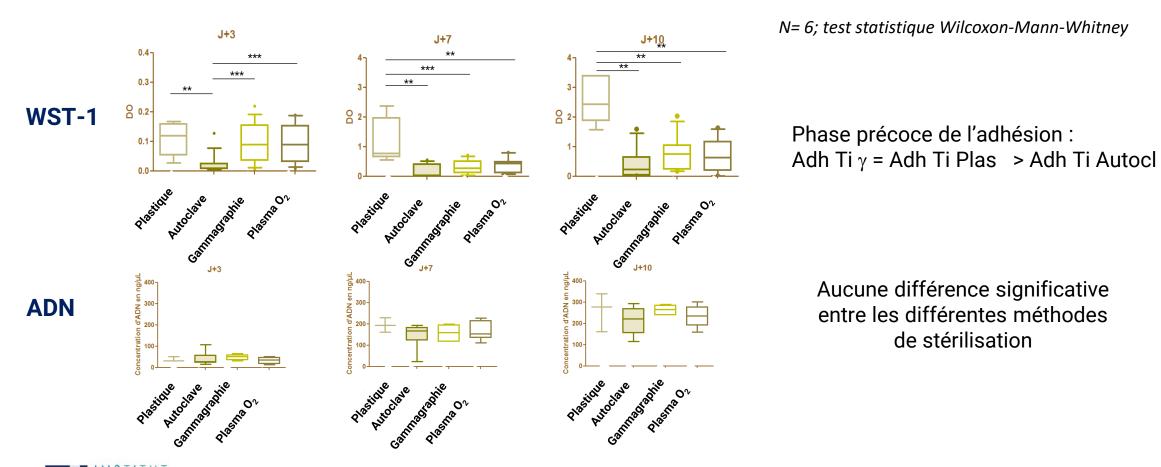
BVDV					
Témoins (log)	T 5' Réduction (log)	T 15' Réduction (log)	T 60' Réduction (log)	T 120' Réduction (log)	
A) 6,36	2,62	3,46	4,17 + 2 > 4,20	4,96	
B) 6,00	1,99	3,06	3,82 + 2 > 3,84	4,73 + 1 > 4,81	

Limite de détection particules < 2,16

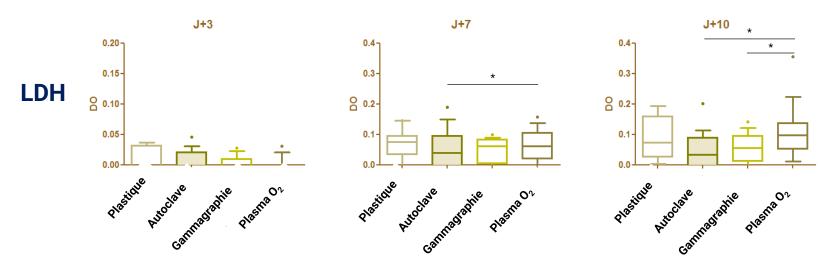
PPV						
Témoins (log)	T 5' Réduction (log)	T 15' Réduction (log)	T 60' Réduction (log)	T 120' Réduction (log)		
A) 6,36	1,07	1,83	> 4,20 x 3	5,21		
B) 6,00	0,91	1,43	3,38	4,97		

Limite de détection des particules < 2,16

La cinétique montre que l'étape ne peut être considérée comme efficace qu'à l'issue du traitement de 120 min puisque la réduction est < 4 log10 après 60 minutes de traitement et ce, même si les valeurs des titres sont proches de la limite de détection.



Etude cytotoxique de matériaux en titane TA6V et PEEK soumis aux traitements plasmas O2



Etude cytotoxique de matériaux en titane TA6V et PEEK soumis aux traitements plasmas 02

N= 6; test statistique Wilcoxon-Mann-Whitney

Le taux de mortalité pour chacun est faible / taux de prolifération. Malgré la différence significative à J+ 10, il est difficile de parler de cytotoxicité du fait de la très faible DO observée

Les plots de titane stérilisés par plasma non-thermique à base d'oxygène n'ont pas présenté de cytotoxicité pour les cellules MG 63 comparé aux autres techniques de stérilisation par gammagraphie ou chaleur humide.

Depuis 2018

- > Amélioration de l'efficacité sporicide du traitement plasma
- Diminution du temps de traitement (< 120 min)</p>

Inactivation *B. subtilis*

A,3 log 120 min > 6 log 50 min

CONCLUSION

- Efficacité bactéricide, sporicide et virucide
- > Temps de traitement < 60 minutes
- Température de traitement inférieur à 37°C
- Pas d'altération significative du sac de stérilisation : conservation de la barrière entre milieu interne et externe
- > Absence de cytotoxicité de matériaux à base de TA6V et de PEEK sur des cellules eucaryotes
- Utilisation de gaz non toxiques
- Pas de production de résidus toxiques : donc pas de temps de désorption nécessaire
- Respect de l'environnement et des utilisateurs
- Besoin énergétique faible : intérêt économique

ETAPES A VENIR

- Essais de dispositif en 3D
- Possibilités de réaliser des tests sur des matériaux et/ou biomatériaux
- Certifications : travail en relation avec les praticiens hospitaliers et à venir l'association française de stérilisation

www.carnot-mica.fr

CARNOT La recherche pour l'innovation des entreprises

Université de Strasbourg

